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Abstract. We derive the jump in the specific heat at T = Tc for a superconductor in a non-Fermi liquid
model. We took into consideration the two possible limits in this problem: the spin-charge separation model
for a Fermi liquid and the usual non-Fermi liquid model which satisfies the homogeneity relation for the
spectral function A(Λk, Λω) = Λ−1+αA(k, ω). We also derive the order parameter behavior for these two
cases in the vecinity of the critical temperature.

PACS. 74.20.Mn Nonconventional mechanisms (spin fluctuations, polarons and bipolarons, resonating
valence bond model, anyon mechanism, marginal Fermi liquid, Luttinger liquid, etc.) – 74.25.-q General
properties; correlations between physical properties in normal and superconducting states

1 Introduction

The unusual normal state properties in high temperature
superconductors (HTSC) lead to the idea that the usual
Fermi liquid theory breaks down. As a consequence there
are several phenomenological models [1,2] proposed in or-
der to explain the nonmetallic behavior of the normal state
and the increases in the critical temperature. We are going
to study the specific heat jump in a non-Fermi liquid sys-
tem which is describe by a single particle Green’s function
of the form G0(k, ω) = ω−αc /[ω − uσk]1/2[ω − uρk]1/2−α,
where ωc is a frequency cutoff introduced to make the
Green’s function dimensionally correct, uσ and uρ are the
velocities for spin and charge density excitations and α is
an non universal exponent related to the anomalous Fermi
surface. This Green’s function is a generalization to the
higher dimensions of a fermion propagator in a 1D inter-
acting system [3]. A similar choice of the Green’s function,
but with uσ = uρ = vF , was taken by Chakravarty and
Anderson [4] in order to study the interlayer tunneling
mechanism of the cuprate-oxides. In such a system the
spectral function A(k, ω) = ImG0(k, ω) satisfies the ho-
mogeneity relation [5] A(Λk, Λω) = Λ−1+αA(k, ω) with
an exponent α > 0, which implies the break down of the
Fermi liquid theory characterized by α = 0.

This model was used by Sudbo [6] and Muthukumar
et al. [7] to evaluate the critical temperature in such a
system. It was shown that in the spin charge separation
limit (uσ 6= uρ, α = 0) there is an enhancement of the
critical temperature compared to a Fermi liquid. In the
case α > 0 there is a critical coupling constant required
for a solution of the critical temperature. For the case
α 6= 0 and uσ = uρ there have been evaluated also the
Ginzburg-Landau coefficients a(T ) and b in order to ob-
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tain the critical field Hc2(T ) near Tc, which can be also
related to the specific heat jump.

In this paper we present a calculation of the specific
heat jump based on the evaluation of the thermodynamic
potential near the critical temperature. The result is very
similar with the one obtained in the usual BCS theory
where a Fermi liquid model it works. The weak point of
the model used is the fact that there are two different
coupling constants in the theory, due to the generalized
Green’s function taken from 1D interacting system.

2 Thermodynamic potential near Tc

for a non-Fermi liquid

The general formula which gives the jump in the thermo-
dynamic potential at T = Tc is given by [8]:
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where Ωs and Ωn is the thermodynamic potential in the
superconducting and normal state respectively, ∆ is the
superconducting gap and g is the coupling constant.

Following Sudbo [6] the general gap equation can be
written as
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with fν = (iωn)2 − (uνk)2, (ν = σ, ρ), which close to Tc
gives
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We introduce the notations η = uσ/uρ < 1 and ε = uρk,
and if we transform the sum over k into an integral over
energies we get from equation (4)
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where N(ε) is the energy density of states. Using now
equations (1) and (5) the jump in the thermodynamic po-
tential is
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There will be study two different cases. For the first one
α = 0 and η 6= 1 will correspond to a normal Fermi liq-
uid with spin charge separation. In this limit equation (6)
becomes
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where we also suppose that the density of states is con-
stant N(ε) = N(0) = constant. In order to evaluate
the jump on the thermodynamic potential at T = Tc
in this case, first we will integrate over ε and after that
we will sum over ωn taking into account the fact that
ωn = (2n+ 1)πT , is a fermionic Matsubara frequency.

Following this way we obtain
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where ζ(x) is the Riemann’s zeta function and
F (α, β; γ; z) is the hypergeometric function.

The second case is the one of a non-Fermi liquid α 6= 0
and η = 1. Using the same calculations as in the case of
the Fermi liquid with spin charge separation we get the
jump in the thermodynamic potential as
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As we can see from equations (8, 9) an evaluation of the
specific heat jump will be possible only if first we will
evaluate the order parameter ∆(T ) near Tc. Using the
same equations we can get the usual BCS result in the
limit η → 1 and α→ 0, respectively.

3 The order parameter ∆(T) near Tc

and the specific heat jump

In both cases the order parameter ∆(T ) near Tc will be
calculated from equation (4) in which we replace 1/g from
the critical temperature equation
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where βc = 1/Tc. The difficulties of the problem arrive
from the fact that in the case of a non-Fermi liquid the
energy spectrum is not a normal one, in place of poles into
the Green’s function, as we have in a Fermi liquid, we have
to deal with branch-cuts.

For the first case of a spin charge separated Fermi liq-
uid we have to evaluate the sums
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and we obtain for the order parameter the general equa-
tion
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The left side of the equation (13) will be evaluated follow-
ing the method proposed in reference [6]. We introduce
the function

H(z, η) =
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where K(x) is the complete elliptic integral of the first
kind. Using this function the gap value near Tc is obtained
in the form
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which can be approximated as
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The second case, α 6= 0 and η = 1, is more complicated
and we have to evaluate the sums
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as
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In order to evaluate the left side of equa-
tion (20) we use the series expansion tanh βx

2 =

1 − 2
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the end only the term with m = 0. The order parameter
in this case of a non-Fermi liquid near Tc will be
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Using these results we are able to express the variation
of the thermodynamic potential near the critical temper-
ature Tc. For the spin charge separation model we get
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and for the non-Fermi liquid model
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The specific heat jump is related to the thermodynamic
potential variation by the general relation Cs − Cn =
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∂T 2 which gives for the two different cases the
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when α = 0 and η 6= 1 and
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for the case with α 6= 0, η = 1.
The result contained in equations (24, 25) are very

similar with the result obtained in BCS calculations. The
important issue of these two equations is that we can an-
alyze the “strength” of the non-Fermi behavior by using
the two parameters η and α. From the experimental point
of view the fit of the data with our results can gives im-
portant information about the two parameters, or if these
two parameters are important or not, which is in fact a
measure of the non-Fermi character of the system.

4 Discussion

We present a derivation of the specific heat jump of a su-
perconductor using a non-Fermi liquid model proposed to
describe the strongly correlated electron system in high
temperature superconductors. The same model was used
by Sudbo [6] and Muthukumar et al. [7] in order to obtain
the critical temperature corresponding to the supercon-
ductivity transition. First we derive the asymptotic for-
mula for the order parameter ∆(T ) at T → Tc. We find
a similar dependence with the BCS case for both cases
which we studied. Using these result we find the jump in
the thermodynamic potential at T = Tc and we express
the jump on the specific heat. We have to mention that
for the case of spin charge separated Fermi liquid there is
possible to reobtain the usual BCS formula for the spe-
cific heat jump by putting η → 1 in equation (24). For the
other case, the one of the non-Fermi liquid with α 6= 0, the
BCS limit is hard to be reobtained due to the fact that
the limit α = 0 is not possible to be done in equation (25).
The results is difficult to be discussed in connection with
experimental data because of the two coupling constants,
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Fig. 1. Specific heat jump scaled to the critical temperature
function of the coupling constant α.

α (α depends on the coupling constants of the strongly
correlated electron system [10]) and λ, which characterize
the model. Even in this case the results are important be-
cause we can get more information about the second cou-
pling constant α, which is related to the unusual form of
the Fermi surface. From theoretical derivation of the crit-
ical temperature [9] it was shown that α should satisfied
the condition 0.3 < α < 0.35 in order to get a reasonable
value for Tc. Taking some reasonable values of the spe-
cific heat jump related to the critical temperature ∆C/Tc
(see Fig. 1) we get that α should satisfies the condition
0.3 < α < 0.4.

In high temperature superconductors an important pa-
rameter is the doping level. It is well known that in the
underdoped, optimal doped and slightly overdoped sam-
ples the usual Fermi liquid theory breaks down, and in the
strong overdoped samples the normal state properties still
can be described by the usual Fermi liquid theory. So, for
our results the more important case is the first one. An-
other problem which should be taken into consideration is
the opening of the pseudo-gap in the normal state of these
materials. The question which should be answered is if in
a mean field treatment of the problem we deal with the
pseudo-gap opening or with the real transition. However,
in the case of slightly overdoped samples the transition
temperature and the temperature related to the pseudo-
gap opening seem to be close enough, so these problem
disappears in such conditions.

Another point of view is the fact that at the transition
point the phase fluctuation seem to have an important
role. It was shown by Nguyen and Sudbo [11] that the
role of such fluctuations can be taken into account in a
3DXY model and the results are close to the experimental
data. In our calculations such an influence is difficult to
be discussed due to the fact that the BCS model is a
pure mean-field approximation. However, such influences
on the results given by a non-Fermi liquid model can be
considered in a gauge model, or a model with singular
interaction, which is more difficult to be compared with
our calculations.

We are grateful to Professor Andrei E. Ruckenstein (Rutgers
University) for useful discussion on the physical aspects of the
non-Fermi liquids.
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